Binary Rounding

Rounding

- Situation:

Number lies between two representable values

- Question:

What rounding choices do we have?

Rounding - Choices

Rounding - Choices

1.001...001|0011...

1.001...001
binary

Rounding - Choices

just cut this off

$1.001 \ldots . .001 \left\lvert\, \begin{array}{ll}1011 \\ \text { binina }\end{array}\right.$

1.001...001
binary

Rounding - Choices

1.001...001|0011...

$\underbrace{\substack{\text {. } \\ \hline}}_{\substack{\text { Rounting } \\ \text { Up }}}$
1.001...001
1.001...010|

Rounding - Choices

1.001...001|0011...

Rounding
Up
1.001...010|

Rounding - Choices

cut this off
1.001...001|登11

Rounding - Choices

AND add +1 here
 cut this off
 $1.001 \ldots 001 \mid{ }^{0011_{\text {binand }}}$

Which when?

- Question:

When does the computer round up/down?

- Rule:

Computer rounds to the closest representable number.

Which when?

- Case 1:
next bit is 0
\rightarrow round down

Case 1 - Example

1.001...001|0011..

Case 1 - Example

next bit is 0
1.001...0010011...

Case 1 - Example

Which when?

- Case 1:
next bit is 0
\rightarrow round down
- Case 2:
next bit is 1 AND
at least one later bit is $\mathbf{1}$ again
\rightarrow round up

Case 2 - Example

1.001...001|1000010...

Case 2 - Example

next bit is 1

Case 2 - Example

Which when?

- Case 1:
next bit is 0

```
round down
```

- Case 2:
next bit is 1 AND
at least one later bit is $\mathbf{1}$ again \rightarrow round up
- Case 3:
next bit is 1 AND
all the following bits are $\mathbf{0}$ \rightarrow round so that last bit is $0\left(^{*}\right)$
(*) Round-to-Even Rule

Case 3 - Example 1

1.001...001|1000...

binary

Case 3 - Example 1

Case 3 - Example 1

this should be 0 after rounding

Case 3 - Example 1

Case 3 - Example 2

1.001...000|1000...

binary

Case 3 - Example 2

Case 3 - Example 2

this should be 0 after rounding

Case 3 - Example 2

Why Round-to-Even?

- Reason:

Round down in approx. 50\% of all times and round up in the remaining 50%.

Why Round-to-Even?

-Reason:
Round down in approx. 50\% of all times and round up in the remaining 50%.

- Imagine:

Sum of 1'000'000 numbers...

Why Round-to-Even?

- Reason:

Round down in approx. 50\% of all times and round up in the remaining 50%.

- Imagine:

Sum of 1'000'000 numbers...
Always round down in Case 3
\rightarrow underestimation

Why Round-to-Even?

- Reason:

Round down in approx. 50\% of all times and round up in the remaining 50%.

- Imagine:

Sum of 1'000'000 numbers...
Always round down in Case 3
\rightarrow underestimation
Always round up in Case 3
\rightarrow overestimation

